3.- Cálculo del tamaño de la muestra

A la hora de determinar el tamaño que debe alcanzar una muestra hay que tomar en cuenta varios factores: el tipo de muestreo, el parámetro a estimar, el error muestral admisible, la varianza poblacional y el nivel de confianza. Por ello antes de presentar algunos casos sencillos de cálculo del tamaño muestral delimitemos estos factores.

Parámetro. Son las medidas o datos que se obtienen sobre la población.

Estadístico. Los datos o medidas que se obtienen sobre una muestra y por lo tanto una estimación de los parámetros.

Error Muestral, de estimación o standard. Es la diferencia entre un estadístico y su parámetro correspondiente. Es una medida de la variabilidad de las estimaciones de muestras repetidas en torno al valor de la población, nos da una noción clara de hasta dónde y con qué probabilidad una estimación basada en una muestra se aleja del valor que se hubiera obtenido por medio de un censo completo. Siempre se comete un error, pero la naturaleza de la investigación nos indicará hasta qué medida podemos cometerlo (los resultados se someten a error muestral e intervalos de confianza que varían muestra a muestra). Varía según se calcule al principio o al final. Un estadístico será más preciso en cuanto y tanto su error es más pequeño. Podríamos decir que es la desviación de la distribución muestral(1) de un estadístico y su fiabilidad.

Nivel de Confianza. Probabilidad de que la estimación efectuada se ajuste a la realidad. Cualquier información que queremos recoger está distribuida según una ley de probabilidad (Gauss o Student), así llamamos nivel de confianza a la probabilidad de que el intervalo construido en torno a un estadístico capte el verdadero valor del parámetro.

Varianza Poblacional. Cuando una población es más homogénea la varianza es menor y el número de entrevistas necesarias para construir un modelo reducido del universo, o de la población, será más pequeño. Generalmente es un valor desconocido y hay que estimarlo a partir de datos de estudios previos.

3.1.- Tamaño de muestra para estimar la media de la población

Veamos los pasos necesarios para determinar el tamaño de una muestra empleando el muestreo aleatorio simple. Para ello es necesario partir de dos supuestos: en primer lugar el nivel de confianza al que queremos trabajar; en segundo lugar, cual es el error máximo que estamos dispuestos a admitir en nuestra estimación. Así pues los pasos a seguir son:
1.- Obtener el tamaño muestral imaginando que :


donde:
: z correspondiente al nivel de confianza elegido
: varianza poblacional
e: error máximo

2.- Comprobar si se cumple

si esta condición se cumple el proceso termina aquí, y ese es el tamaño adecuado que debemos muestrear.

Si no se cumple, pasamos a una tercera fase:
3.- Obtener el tamaño de la muestra según la siguiente fórmula:

Veamos un ejemplo: La Consejería de Trabajo planea un estudio con el interés de conocer el promedio de horas semanales trabajadas por las mujeres del servicio doméstico. La muestra será extraída de una población de 10000 mujeres que figuran en los registros de la Seguridad Social y de las cuales se conoce a través de un estudio piloto que su varianza es de 9.648. Trabajando con un nivel de confianza de 0.95 y estando dispuestos a admitir un error máximo de 0,1, ¿cuál debe ser el tamaño muestral que empleemos?.

Buscamos en las tablas de la curva normal el valor de  que corresponde con el nivel de confianza elegido: = ±1.96 y seguimos los pasos propuestos arriba.

1.-

2.- Comprobamos que no se cumple , pues en este caso

10000 < 3706 (3706 - 1); 10000 < 13730730

3.-

3.2.- Tamaño de muestra para estimar la proporción de la población

Para calcular el tamaño de muestra para la estimación de proporciones poblacionales hemos de tener en cuenta los mismos factores que en el caso de la media. La fórmula que nos permitirá determinar el tamaño muestral es la siguiente:


donde
: z correspondiente al nivel de confianza elegido
P: proporción de una categoría de la variable
e: error máximo
N: tamaño de la población

Siguiendo con el estudio planteado en el punto anterior, supongamos que tratamos de estimar la proporción de mujeres que trabajan diariamente 10 horas o más. De un estudio piloto se dedujo que P=0.30, fijamos el nivel de confianza en 0.95 y el error máximo 0.02.
 



(1) Por distribución muestral se entiende la distribución de frecuencias de los valores de un estadístico en infinitas muestras iguales.